Kubernetes

一、集群架构与组件

1、相关组件

1.控制面板组件(Master)

1 kube-apiserver

接口服务,基于REST风格开放k8s接口的服务

API 服务器是 Kubernetes 控制平面的组件, 该组件负责公开了 Kubernetes API,负责处理接受请求的工作。 API 服务器是Kubernetes 控制平面的前端。

Kubernetes API 服务器的主要实现是 kube-apiserver。 kube-apiserver 设计上考虑了水平扩缩,也就是说,它可通过部署多个实例来进行扩缩。 你可以运行 kube-apiserver 的多个实例,并在这些实例之间平衡流量。

2 kube-controller-manager

控制器管理器:管理各个类型的控制器

kube-controller-manager 是控制平面的组件, 负责运行控制器进程。

从逻辑上讲, 每个控制器都是一个单独的进程, 但是为了降低复杂性,它们都被编译到同一个可执行文件,并在同一个进程中运行。

这些控制器包括:

节点控制器(Node Controller):负责在节点出现故障时进行通知和响应

任务控制器(Job Controller):监测代表一次性任务的 Job 对象,然后创建 Pods 来运行这些任务直至完成

端点分片控制器(EndpointSlice controller):填充端点分片(EndpointSlice)对象(以提供 Service 和 Pod 之间的链接)。

服务账号控制器(ServiceAccount controller):为新的命名空间创建默认的服务账号(ServiceAccount)。

3 cloud-controller-manager

云控制器管理器:第三方云平台提供的对接管理功能

嵌入了特定于云平台的控制逻辑。 云控制器管理器(Cloud Controller Manager)允许你将你的集群连接到云提供商的 API 之上, 并将与该云平台交互的组件同与你的集群交互的组件分离开来。

cloud-controller-manager 仅运行特定于云平台的控制器。 因此如果你在自己的环境中运行 Kubernetes,或者在本地计算机中运行学习环境, 所部署的集群不需要有云控制器管理器。

与 kube-controller-manager 类似,cloud-controller-manager 将若干逻辑上独立的控制回路组合到同一个可执行文件中, 供你以同一进程的方式运行。 你可以对其执行水平扩容(运行不止一个副本)以提升性能或者增强容错能力。

4 kube-scheduler

调度器:负责将Pod基于一定算法,将其调用到更合适的节点(服务器)上

scheduler 负责资源的调度,按照预定的调度策略将 Pod 调度到相应的机器上;

5 etcd

k8s的数据库,键值类型存储的分布式数据库,提供了基于Raft算法实现自主的集群高可用
老版本:基于内存
新版本:持久化存储

一致且高度可用的键值存储,用作 Kubernetes 的所有集群数据的后台数据库。

如果你的 Kubernetes 集群使用 etcd 作为其后台数据库, 请确保你针对这些数据有一份备份计划。

你可以在官方文档中找到有关 etcd 的深入知识。

早期数据存放在内存,现在已经是持久化存储的了。

2.节点组件(node)

1 kubelet

负责 Pod 的生命周期、存储管理

kubelet 负责维护容器的生命周期,同时也负责 Volume(CVI)和网络(CNI)的管理;

2 kube-proxy

网络代理,负责server的服务发现和对应的负载均衡,四层负载

kube-proxy 负责为 Service 提供 cluster 内部的服务发现和负载均衡;

3 container-runtime

容器运行时环境:docker、containerd、CRI-O

Container runtime 负责镜像管理以及 Pod 和容器的真正运行(CRI);

Kubernetes 支持许多容器运行环境,例如 containerd、 CRI-O 以及 Kubernetes CRI (容器运行环境接口) 的其他任何实现。

3.附加组件

1 kube-dns

kube-dns 负责为整个集群提供 DNS 服务

2 Ingress Controller

Ingress Controller 为服务提供外网入口

3 Prometheus

Prometheus 提供资源监控

4 Dashboard

Dashboard 提供 GUI

5 Federation

Federation 提供跨可用区的集群

6 Fluentd-elasticsearch

Fluentd-elasticsearch 提供集群日志采集、存储与查询

2、分层架构


1.生态系统

在接口层之上的庞大容器集群管理调度的生态系统,可以划分为两个范畴:

Kubernetes 外部:日志、监控、配置管理、CI、CD、Workflow、FaaS、OTS 应用、ChatOps 等

Kubernetes 内部:CRI、CNI、CVI、镜像仓库、Cloud Provider、集群自身的配置和管理等

2.接口层

kubectl 命令行工具、客户端 SDK 以及集群联邦

3.管理层

系统度量(如基础设施、容器和网络的度量),自动化(如自动扩展、动态 Provision 等)以及策略管理(RBAC、Quota、PSP、NetworkPolicy 等)

4.应用层

部署(无状态应用、有状态应用、批处理任务、集群应用等)和路由(服务发现、DNS 解析等)

5.核心层

Kubernetes 最核心的功能,对外提供 API 构建高层的应用,对内提供插件式应用执行环境


二、核心概念和专业术语

1、有状态应用和无状态应用

1.无状态应用

简单来说就是服务重新配置部署好后,是否还需要之前的数据,比如mysql删除后,再次部署后需要,就需要之前的数据库数据,不然部署就是没有意义的,而nginx部署配置后,能直接开始使用,不需要额外的数据支撑

代表应用:Nginx、Apache
优点:对客户端透明,无依赖关系,可以高效实现扩容、迁移
缺点:不能存储数据,需要额外的数据服务支撑

2.有状态应用

代表应用:Mysql、Redis
优点:可以独立存储数据,实现数据管理
缺点:集群环境下需要实现主从、数据同步、备份、水平扩容复杂

2、资源和对象

Kubernetes 中的所有内容都被抽象为“资源”,如 Pod、Service、Node 等都是资源。“对象”就是“资源”的实例,是持久化的实体。如某个具体的 Pod、某个具体的 Node。Kubernetes 使用这些实体去表示整个集群的状态。

对象的创建、删除、修改都是通过 “Kubernetes API”,也就是 “Api Server” 组件提供的 API 接口,这些是 RESTful 风格的 Api,与 k8s 的“万物皆对象”理念相符。命令行工具 “kubectl”,实际上也是调用 kubernetes api。

K8s 中的资源类别有很多种,kubectl 可以通过配置文件来创建这些 “对象”,配置文件更像是描述对象“属性”的文件,配置文件格式可以是 “JSON” 或 “YAML”,常用 “YAML”。

1.资源的分类

1 元数据型

Horizontal Pod Autoscaler(HPA)
Pod 自动扩容:可以根据 CPU 使用率或自定义指标(metrics)自动对 Pod 进行扩/缩容。

控制管理器每隔30s(可以通过–horizontal-pod-autoscaler-sync-period修改)查询metrics的资源使用情况

支持三种metrics类型

预定义metrics(比如Pod的CPU)以利用率的方式计算

自定义的Pod metrics,以原始值(raw value)的方式计算

自定义的object metrics

支持两种metrics查询方式:Heapster和自定义的REST API

支持多metrics

PodTemplate
Pod Template 是关于 Pod 的定义,但是被包含在其他的 Kubernetes 对象中(例如 Deployment、StatefulSet、DaemonSet 等控制器)。控制器通过 Pod Template 信息来创建 Pod。

LimitRange
可以对集群内 Request 和 Limits 的配置做一个全局的统一的限制,相当于批量设置了某一个范围内(某个命名空间)的 Pod 的资源使用限制。

2 集群级

Namespace
Kubernetes 支持多个虚拟集群,它们底层依赖于同一个物理集群,这些虚拟集群被称为命名空间。

作用是用于实现多团队/环境的资源隔离。

命名空间 namespace 是 k8s 集群级别的资源,可以给不同的用户、租户、环境或项目创建对应的命名空间。

默认 namespace:

kube-system 主要用于运行系统级资源,存放 k8s 自身的组件

kube-public 此命名空间是自动创建的,并且可供所有用户(包括未经过身份验证的用户)读取。此命名空间主要用于集群使用,关联的一些资源在集群中是可见的并且可以公开读取。此命名空间的公共方面知识一个约定,但不是非要这么要求。

default 未指定名称空间的资源就是 default,即你在创建pod 时如果没有指定 namespace,则会默认使用 default

Node
不像其他的资源(如 Pod 和 Namespace),Node 本质上不是Kubernetes 来创建的,Kubernetes 只是管理 Node 上的资源。虽然可以通过 Manifest 创建一个Node对象(如下 json 所示),但 Kubernetes 也只是去检查是否真的是有这么一个 Node,如果检查失败,也不会往上调度 Pod。

ClusterRole
ClusterRole 是一组权限的集合,但与 Role 不同的是,ClusterRole 可以在包括所有 Namespace 和集群级别的资源或非资源类型进行鉴权。

ClusterRoleBinding
ClusterRoleBinding:将 Subject 绑定到 ClusterRole,ClusterRoleBinding 将使规则在所有命名空间中生效。

3 命名空间级

Pod

Pod(容器组)是 Kubernetes 中最小的可部署单元。一个 Pod(容器组)包含了一个应用程序容器(某些情况下是多个容器)、存储资源、一个唯一的网络 IP 地址、以及一些确定容器该如何运行的选项。Pod 容器组代表了 Kubernetes 中一个独立的应用程序运行实例,该实例可能由单个容器或者几个紧耦合在一起的容器组成。

Docker 是 Kubernetes Pod 中使用最广泛的容器引擎;Kubernetes Pod 同时也支持其他类型的容器引擎。

Kubernetes 集群中的 Pod 存在如下两种使用途径:

一个 Pod 中只运行一个容器。"one-container-per-pod" 是 Kubernetes 中最常见的使用方式。此时,您可以认为 Pod 容器组是该容器的 wrapper,Kubernetes 通过 Pod 管理容器,而不是直接管理容器。

一个 Pod 中运行多个需要互相协作的容器。您可以将多个紧密耦合、共享资源且始终在一起运行的容器编排在同一个 Pod 中,可能的情况有:


副本(replicas)
先引入“副本”的概念——一个 Pod 可以被复制成多份,每一份可被称之为一个“副本”,这些“副本”除了一些描述性的信息(Pod 的名字、uid 等)不一样以外,其它信息都是一样的,譬如 Pod 内部的容器、容器数量、容器里面运行的应用等的这些信息都是一样的,这些副本提供同样的功能。

Pod 的“控制器”通常包含一个名为 “replicas” 的属性。“replicas”属性则指定了特定 Pod 的副本的数量,当当前集群中该 Pod 的数量与该属性指定的值不一致时,k8s 会采取一些策略去使得当前状态满足配置的要求。

控制器

适用于无状态

ReplicationController(RC):
Replication Controller 简称 RC,RC 是 Kubernetes 系统中的核心概念之一,简单来说,RC 可以保证在任意时间运行 Pod 的副本数量,能够保证 Pod 总是可用的。如果实际 Pod 数量比指定的多那就结束掉多余的,如果实际数量比指定的少就新启动一些Pod,当 Pod 失败、被删除或者挂掉后,RC 都会去自动创建新的 Pod 来保证副本数量,所以即使只有一个 Pod,我们也应该使用 RC 来管理我们的 Pod。可以说,通过 ReplicationController,Kubernetes 实现了 Pod 的高可用性。

ReplicaSet(RS):
RC (ReplicationController )主要的作用就是用来确保容器应用的副本数始终保持在用户定义的副本数 。即如果有容器异常退出,会自动创建新的 Pod 来替代;而如果异常多出来的容器也会自动回收(已经成为过去时),在 v1.11 版本废弃。
Kubernetes 官方建议使用 RS(ReplicaSet ) 替代 RC (ReplicationController ) 进行部署,RS 跟 RC 没有本质的不同,只是名字不一样,并且 RS 支持集合式的 selector。
Label 和 Selector
label (标签)是附加到 Kubernetes 对象(比如 Pods)上的键值对,用于区分对象(比如Pod、Service)。 label 旨在用于指定对用户有意义且相关的对象的标识属性,但不直接对核心系统有语义含义。 label 可以用于组织和选择对象的子集。label 可以在创建时附加到对象,随后可以随时添加和修改。可以像 namespace 一样,使用 label 来获取某类对象,但 label 可以与 selector 一起配合使用,用表达式对条件加以限制,实现更精确、更灵活的资源查找。

label 与 selector 配合,可以实现对象的“关联”,“Pod 控制器” 与 Pod 是相关联的 —— “Pod 控制器”依赖于 Pod,可以给 Pod 设置 label,然后给“控制器”设置对应的 selector,这就实现了对象的关联。

Deployment:
Deployment 为 Pod 和 Replica Set 提供声明式更新。
你只需要在 Deployment 中描述你想要的目标状态是什么,Deployment controller 就会帮你将 Pod 和 Replica Set 的实际状态改变到你的目标状态。你可以定义一个全新的 Deployment,也可以创建一个新的替换旧的 Deployment。

适用有状态服务
StatefulSet:
StatefulSet 中每个 Pod 的 DNS 格式为 statefulSetName-{0..N-1}.serviceName.namespace.svc.cluster.local

serviceName 为 Headless Service 的名字

0..N-1 为 Pod 所在的序号,从 0 开始到 N-1

statefulSetName 为 StatefulSet 的名字

namespace 为服务所在的 namespace,Headless Servic 和 StatefulSet 必须在相同的 namespace

.cluster.local 为 Cluster Domain

守护进程
DaemonSet:
DaemonSet 保证在每个 Node 上都运行一个容器副本,常用来部署一些集群的日志、监控或者其他系统管理应用。典型的应用包括:

日志收集,比如 fluentd,logstash 等

系统监控,比如 Prometheus Node Exporter,collectd,New Relic agent,Ganglia gmond 等

系统程序,比如 kube-proxy, kube-dns, glusterd, ceph 等

任务/定时任务
Job:
一次性任务,运行完成后Pod销毁,不再重新启动新容器。

CronJob:
CronJob 是在 Job 基础上加上了定时功能。

服务发现

Service

“Service” 简写 “svc”。Pod 不能直接提供给外网访问,而是应该使用 service。Service 就是把 Pod 暴露出来提供服务,Service 才是真正的“服务”,它的中文名就叫“服务”。

可以说 Service 是一个应用服务的抽象,定义了 Pod 逻辑集合和访问这个 Pod 集合的策略。Service 代理 Pod 集合,对外表现为一个访问入口,访问该入口的请求将经过负载均衡,转发到后端 Pod 中的容器。

Ingress

Ingress 可以提供外网访问 Service 的能力。可以把某个请求地址映射、路由到特定的 service。

ingress 需要配合 ingress controller 一起使用才能发挥作用,ingress 只是相当于路由规则的集合而已,真正实现路由功能的,是 Ingress Controller,ingress controller 和其它 k8s 组件一样,也是在 Pod 中运行。

CronJob

CronJob 是在 Job 基础上加上了定时功能。

存储

Volume

数据卷,共享 Pod 中容器使用的数据。用来放持久化的数据,比如数据库数据。

CSI

Container Storage Interface 是由来自 Kubernetes、Mesos、Docker 等社区成员联合制定的一个行业标准接口规范,旨在将任意存储系统暴露给容器化应用程序。

CSI 规范定义了存储提供商实现 CSI 兼容的 Volume Plugin 的最小操作集和部署建议。CSI 规范的主要焦点是声明 Volume Plugin 必须实现的接口。

特殊类型配置

ConfigMap

用来放配置,与 Secret 是类似的,只是 ConfigMap 放的是明文的数据,Secret 是密文存放。

Secret

Secret 解决了密码、token、密钥等敏感数据的配置问题,而不需要把这些敏感数据暴露到镜像或者 Pod Spec 中。Secret 可以以 Volume 或者环境变量的方式使用。

Secret 有三种类型:

Service Account:用来访问 Kubernetes API,由 Kubernetes 自动创建,并且会自动挂载到 Pod 的 /run/secrets/kubernetes.io/serviceaccount 目录中;

Opaque:base64 编码格式的 Secret,用来存储密码、密钥等;

kubernetes.io/dockerconfigjson:用来存储私有 docker registry 的认证信息。

DownwardAPI

downwardAPI 这个模式和其他模式不一样的地方在于它不是为了存放容器的数据也不是用来进行容器和宿主机的数据交换的,而是让 pod 里的容器能够直接获取到这个 pod 对象本身的一些信息。

downwardAPI 提供了两种方式用于将 pod 的信息注入到容器内部:

环境变量:用于单个变量,可以将 pod 信息和容器信息直接注入容器内部

volume 挂载:将 pod 信息生成为文件,直接挂载到容器内部中去

其他

Role

Role 是一组权限的集合,例如 Role 可以包含列出 Pod 权限及列出 Deployment 权限,Role 用于给某个 Namespace 中的资源进行鉴权。

RoleBinding

RoleBinding :将 Subject 绑定到 Role,RoleBinding 使规则在命名空间内生效。

2.资源清单

创建 k8s 的对象都是通过 yaml 文件的形式进行配置的
参数名 类型 字段说明
apiVersion String K8S APl 的版本,可以用 kubectl api versions 命令查询
kind String yam 文件定义的资源类型和角色
metadata Object 元数据对象,下面是它的属性
metadata.name String 元数据对象的名字,比如 pod 的名字
metadata.namespace String 元数据对象的命名空间
Spec Object 详细定义对象
spec.containers[] list 定义 Spec 对象的容器列表
spec.containers[].name String 为列表中的某个容器定义名称
spec.containers[].image String 为列表中的某个容器定义需要的镜像名称
spec.containers[].imagePullPolicy string 定义镜像拉取策略,有 Always、Never、IfNotPresent 三个值可选
- Always(默认):意思是每次都尝试重新拉取镜像
- Never:表示仅适用本地镜像
- IfNotPresent:如果本地有镜像就使用本地镜像,没有就拉取在线镜像。
spec.containers[].command[] list 指定容器启动命令,因为是数组可以指定多个,不指定则使用镜像打包时使用的启动命令。
spec.containers[].args[] list 指定容器启动命令参数,因为是数组可以指定多个。
spec.containers[].workingDir string 指定容器的工作目录
spec.containers[].volumeMounts[] list 指定容器内部的存储卷配置
spec.containers[].volumeMounts[].name string 指定可以被容器挂载的存储卷的名称
spec.containers[].volumeMounts[].mountPath string 指定可以被容器挂载的存储卷的路径
spec.containers[].volumeMounts[].readOnly string 设置存储卷路径的读写模式,ture 或者 false,默认是读写模式
spec.containers[].ports[] list 指定容器需要用到的端口列表
spec.containers[].ports[].name string 指定端口的名称
spec.containers[].ports[].containerPort string 指定容器需要监听的端口号
spec.containers[].ports[].hostPort string 指定容器所在主机需要监听的端口号,默认跟上面 containerPort 相同,注意设置了 hostPort 同一台主机无法启动该容器的相同副本(因为主机的端口号不能相同,这样会冲突)
spec.containers[].ports[].protocol string 指定端口协议,支持 TCP 和 UDP,默认值为 TCP
spec.containers[].env[] list 指定容器运行前需设置的环境变量列表
spec.containers[].env[].name string 指定环境变量名称
spec.containers[].env[].value string 指定环境变量值
spec.containers[].resources Object 指定资源限制和资源请求的值(这里开始就是设置容器的资源上限)
spec.containers[].resources.limits Object 指定设置容器运行时资源的运行上限
spec.containers[].resources.limits.cpu string 指定 CPU 的限制,单位为 Core 数,将用于 docker run –cpu-shares 参数
spec.containers[].resources.limits.memory string 指定 mem 内存的限制,单位为 MIB、GiB
spec.containers[].resources.requests Object 指定容器启动和调度时的限制设置
spec.containers[].resources.requests.cpu string CPU请求,单位为core数,容器启动时初始化可用数量
spec.containers[].resources.requests.memory string 内存请求,单位为MIB、GiB,容器启动的初始化可用数量
spec.restartPolicy string 定义 pod 的重启策略,可选值为 Always、OnFailure、Never,默认值为 Always。
- Always:pod 一旦终止运行,则无论容器是如何终止的,kubelet 服务都将重启它。
- OnFailure:只有 pod 以非零退出码终止时,kubelet 才会重启该容器。如果容器正常结束(退出码为0),则 kubectl 将不会重启它。
- Never:Pod 终止后,kubelet 将退出码报告给 master,不会重启该 pod
spec.nodeSelector Object 定义 Node 的 label 过滤标签,以 key:value 格式指定
spec.imagePullSecrets Object 定义 pull 镜像时使用 secret 名称,以 name:secretkey 格式指定
spec.hostNetwork Boolean 定义是否使用主机网络模式,默认值为 false。设置 true 表示使用宿主机网络,不使用 docker 网桥,同时设置了 true将无法在同一台宿主机上启动第二个副本

3、对象规约和状态

1.规约(spec)

“spec” 是 “规约”、“规格” 的意思,spec 是必需的,它描述了对象的期望状态(Desired State)—— 希望对象所具有的特征。当创建 Kubernetes 对象时,必须提供对象的规约,用来描述该对象的期望状态,以及关于对象的一些基本信息(例如名称)。

2.状态(status)

表示对象的实际状态,该属性由 k8s 自己维护,k8s 会通过一系列的控制器对对应对象进行管理,让对象尽可能的让实际状态与期望状态重合。

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注